The pattern of neutral molecular variation under the background selection model.
نویسندگان
چکیده
Stochastic simulations of the infinite sites model were used to study the behavior of genetic diversity at a neutral locus in a genomic region without recombination, but subject to selection against deleterious alleles maintained by recurrent mutation (background selection). In large populations, the effect of background selection on the number of segregating sites approaches the effect on nucleotide site diversity, i.e., the reduction in genetic variability caused by background selection resembles that caused by a simple reduction in effective population size. We examined, by coalescence-based methods, the power of several tests for the departure from neutral expectation of the frequency spectra of alleles in samples from randomly mating populations (Tajima's, Fu and Li's, and Watterson's tests). All of the tests have low power unless the selection against mutant alleles is extremely weak. In Drosophila, significant Tajima's tests are usually not obtained with empirical data sets from loci in genomic regions with restricted recombination frequencies and that exhibit low genetic diversity. This is consistent with the operation of background selection as opposed to selective sweeps. It remains to be decided whether background selection is sufficient to explain the observed extent of reduction in diversity in regions of restricted recombination.
منابع مشابه
The mode of evolution of molecular markers in populations of house mice under artificial selection for locomotor behavior.
A complete understanding of the mode of evolution of molecular markers is important for making inferences about different population genetic parameters, especially because a number of studies have reported patterns of allelic variation at molecular markers that are not in agreement with neutral evolutionary expectations. In the present study, house mice (Mus domesticus) from the fourteenth gene...
متن کاملSelective sweep at a quantitative trait locus in the presence of background genetic variation.
We model selection at a locus affecting a quantitative trait (QTL) in the presence of genetic variance due to other loci. The dynamics at the QTL are related to the initial genotypic value and to the background genetic variance of the trait, assuming that background genetic values are normally distributed, under three different forms of selection on the trait. Approximate dynamics are derived u...
متن کاملPolymorphism and divergence at the prune locus in Drosophila melanogaster and D. simulans.
The prune locus of Drosophila melanogaster lies at the tip of the X chromosome, in a region of reduced recombination in which nearby loci show reduced variation relative to evolutionary divergence from D. simulans. DNA sequencing of prune alleles from D. melanogaster and D. simulans reveals extremely low variation in D. melanogaster but greater variation in D. simulans. Divergence between the t...
متن کاملJoint effects of genetic hitchhiking and background selection on neutral variation.
Due to relatively high rates of strongly selected deleterious mutations, directional selection on favorable alleles (causing hitchhiking effects on linked neutral polymorphisms) is expected to occur while a deleterious mutation-selection balance is present in a population. We analyze this interaction of directional selection and background selection and study their combined effects on neutral v...
متن کاملHigh nucleotide sequence variation in a region of low recombination in Drosophila simulans is consistent with the background selection model.
We surveyed nucleotide sequence variation at glucose dehydrogenase (Gld), in a region of low recombination on chromosome 3R, from a population sample of Drosophila simulans. The levels of nucleotide variation were surprisingly high. There was no departure from the expectation of a neutral model for the level of polymorphism, indicating no evidence of a selective sweep in this region. There was ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 141 4 شماره
صفحات -
تاریخ انتشار 1995